5,750 research outputs found

    Distributed estimation from relative measurements of heterogeneous and uncertain quality

    Get PDF
    This paper studies the problem of estimation from relative measurements in a graph, in which a vector indexed over the nodes has to be reconstructed from pairwise measurements of differences between its components associated to nodes connected by an edge. In order to model heterogeneity and uncertainty of the measurements, we assume them to be affected by additive noise distributed according to a Gaussian mixture. In this original setup, we formulate the problem of computing the Maximum-Likelihood (ML) estimates and we design two novel algorithms, based on Least Squares regression and Expectation-Maximization (EM). The first algorithm (LS- EM) is centralized and performs the estimation from relative measurements, the soft classification of the measurements, and the estimation of the noise parameters. The second algorithm (Distributed LS-EM) is distributed and performs estimation and soft classification of the measurements, but requires the knowledge of the noise parameters. We provide rigorous proofs of convergence of both algorithms and we present numerical experiments to evaluate and compare their performance with classical solutions. The experiments show the robustness of the proposed methods against different kinds of noise and, for the Distributed LS-EM, against errors in the knowledge of noise parameters.Comment: Submitted to IEEE transaction

    Predicting intensive care outcome: comparing three outcome prediction models, APACHE II, SAPS II, and MPM II

    Get PDF
    published_or_final_versio

    Interaction effects in non-Hermitian models of vortex physics

    Full text link
    Vortex lines in superconductors in an external magnetic field slightly tilted from randomly-distributed parallel columnar defects can be modeled by a system of interacting bosons in a non-Hermitian vector potential and a random scalar potential. We develop a theory of the strongly-disordered non-Hermitian boson Hubbard model using the Hartree-Bogoliubov approximation and apply it to calculate the complex energy spectra, the vortex tilt angle and the tilt modulus of (1+1)-dimensional directed flux line systems. We construct the phase diagram associated with the flux-liquid to Bose-glass transition and find that, close to the phase boundary, the tilted flux liquid phase is characterized by a band of localized excitations, with two mobility edges in its low-energy spectrum.Comment: 19 pages, 19 figures, To appear in Phys. Rev.

    Search for the Lepton-Number-Violating Decay Ξ−→pΌ−Ό−\Xi^- \to p \mu^- \mu^-

    Full text link
    A sensitive search for the lepton-number-violating decay Ξ−→pΌ−Ό−\Xi^-\to p \mu^-\mu^- has been performed using a sample of ∌109\sim10^9 Ξ−\Xi^- hyperons produced in 800 GeV/cc pp-Cu collisions. We obtain B(Ξ−→pΌ−Ό−)<4.0×10−8\mathcal{B}(\Xi^-\to p \mu^-\mu^-)< 4.0\times 10^{-8} at 90% confidence, improving on the best previous limit by four orders of magnitude.Comment: 9 pages, 5 figures, to be published in Phys. Rev. Let

    Measurement of the Alpha Asymmetry Parameter for the Omega- to Lambda K- Decay

    Full text link
    We have measured the alpha parameter of the Omega- to Lambda K- decay using data collected with the HyperCP spectrometer during the 1997 fixed-target run at Fermilab. Analyzing a sample of 0.96 million Omega- to Lambda K^-, Lambda to p pi- decays, we obtain alpha_Omega*alpha_Lambda = [1.33+/-0.33(stat)+/-0.52(syst)] x 10^{-2}. With the accepted value of alpha_Lambda, alpha_Omega is found to be [2.07+/-0.51(stat)+/-0.81(syst)] x 10^{-2}.Comment: 5 pages, 4 figures, to be appeared as a Rapid Communication in Phys. Rev.

    Mean-Field HP Model, Designability and Alpha-Helices in Protein Structures

    Full text link
    Analysis of the geometric properties of a mean-field HP model on a square lattice for protein structure shows that structures with large number of switch backs between surface and core sites are chosen favorably by peptides as unique ground states. Global comparison of model (binary) peptide sequences with concatenated (binary) protein sequences listed in the Protein Data Bank and the Dali Domain Dictionary indicates that the highest correlation occurs between model peptides choosing the favored structures and those portions of protein sequences containing alpha-helices.Comment: 4 pages, 2 figure

    The KMOS^3D Survey: design, first results, and the evolution of galaxy kinematics from 0.7<z<2.7

    Get PDF
    We present the KMOS^3D survey, a new integral field survey of over 600 galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D survey utilizes synergies with multi-wavelength ground and space-based surveys to trace the evolution of spatially-resolved kinematics and star formation from a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M∗M_*) and rest-frame (U−V)−M∗(U-V)-M_* planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first year of data we detect Halpha emission in 191 M∗=3×109−7×1011M_*=3\times10^{9}-7\times10^{11} Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In the current sample 83% of the resolved galaxies are rotation-dominated, determined from a continuous velocity gradient and vrot/σ>1v_{rot}/\sigma>1, implying that the star-forming 'main sequence' (MS) is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Halpha kinematic maps indicate at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous IFS studies at z>0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the rotational velocities at the two redshifts are comparable. Combined with existing results spanning z~0-3, disk velocity dispersions follow an approximate (1+z) evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally-stable disk theory.Comment: 20 pages, 11 figures, 1 Appendix; Accepted to ApJ November 2

    HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays

    Full text link
    The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ\Xi and Λ\Lambda hyperon decays with a sensitivity of 10−410^{-4}. Intense charged secondary beams were produced by 800 GeV/c protons and momentum-selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in twelve months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.
    • 

    corecore